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ABSTRACT Intranasal route continues to be one of the
main focuses of drug delivery research. Although it is generally
perceived that the nasal route could avoid the first-pass
metabolism in liver and gastrointestinal tract, the role of
metabolic conversions in systemic and brain-targeted deliveries
of the parent compounds and their metabolites should not be
underestimated. In this commentary, metabolite formations
after intranasal and other routes of administration are
compared. Also, the disposition of metabolites in plasma and
brain after nasal administrations of parent drugs, prodrugs and
preformed metabolites will be discussed. The importance
and implications of metabolism for future nasal drug develop-
ment are highlighted.

KEY WORDS active metabolite - brain distribution - central
nervous system - drug delivery - intranasal - metabolism

INTRODUCTION

Intranasal route continues to be an attractive field of
research on systemic and brain-targeted drug deliveries.
Although nasal route is regarded as a path that could
avoid the first-pass metabolism in liver and gastrointesti-
nal (GI) tract, the role of metabolic conversions in
systemic and brain-targeted deliveries of the parent
compounds and their metabolites should not be under-
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estimated. Metabolite formation after intranasal applica-
tion has not received adequate attention in the past,
probably due to following reasons: 1) It is a general belief
that the nasal route could avoid the first-pass metabolism
effects. Consequently, information about the formation
and importance of metabolites after nasal delivery of the
parent drugs is limited. 2) The amount of metabolite
formed, particularly in brain, is usually low in both
human and animals. The traditional analytical instru-
ments might not be sensitive enough for quantification or
even identification of metabolites in plasma and central
nervous system (CNS) including cerebrospinal fluid (CSF),
intracellular contents after homogenization of brain
tissue, or extracellular microdialysis. In addition, the
unstable metabolites might not withstand the storage
and sample treatments. With the development of ad-
vanced analytical technologies, such as LC/MS/MS and
LC/NMR (1), qualitative and quantitative monitoring of
active metabolites is becoming more feasible in nasal drug
development. In this commentary, we summarize the
metabolite formations and the disposition of metabolites
in plasma and brain after nasal administrations of parent
drugs, prodrugs and preformed metabolites. The impor-
tance and implications of metabolism for future nasal drug
development are highlighted.

METABOLITE FORMATION IN HUMAN
AFTER NASAL APPLICATION

Nasal Metabolisms
Although the metabolic capacity in nasal cavity is lower

than that in liver or GI tract, the nasally applied drugs
might still be subjected to metabolisms in the nasal mucosa.
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Phase I enzymes, such as cytochrome P-450s (CYP) and
epoxide hydroxylase, and conjugative Phase II enzymes,
such as UDP-glucuronyltransferase and glutathione trans-
ferase, have been identified in human nasal tissue (2).
Metabolisms in nasal cavity play important roles in
bioactivation and deactivation of inhaled or systemically
applied toxicants (3), which have long been the focus of
nasal investigations. However, data regarding the metabo-
lism of nasal drugs is limited. Besides biotransformations,
nasal metabolism could enhance upper respiratory tract
scrubbing capacity of vapors such as naphthalene (4).

Gervasi ¢t al. found in human respiratory mucosa that
the amount of CYPs was about 1/20 of those in liver
(~0.025 nmol/mg protein in nasal mucosa and ~0.5 nmol/
mg protein in liver), and the catalytic activities of CYPs in
human nasal mucosa were in general lower than that in
liver (5). However, CYP activity on diethylnitrosamine
in nasal mucosa, expressed per nmol of CYPs, was found to
be 10-25 times higher than that in human liver (6). In
metabolism studies of the CYP substrates by human
respiratory mucosa, it was found that ethoxyresorufin was
not metabolized, and the metabolisms of both testosterone
and loteprednol-etabonate were limited and markedly
lower than that in the liver (7). On the contrary, metabolic
clearance of testosterone was higher in olfactory mucosa
than liver in rat (8). For enzymes such as glutathione
transferase, epoxide hydroxylase and rhodanese, Gervasi’s
study suggested that their activities were comparable or
lower than that of human liver, while the nasal UDP-
glucuronyltransferase activity was undetectable (5).

Direct nose-to-brain delivery through the olfactory
region has undergone intensive investigation since the
1990s. Along the olfactory pathway, the enzyme expres-
sions and specific metabolic barriers involved in olfactory
epithelium, olfactory bulbs and brain have been reviewed
by Minn ¢t al. (9). However, the significance of olfactory
enzyme systems relative to the metabolism and disposi-
tion of the xenobiotics in brain after nasal application
remains unknown in human. In laboratory animals, for
most enzymes, olfactory mucosa has a greater level of
activity than nasal respiratory mucosa (10), and the
concentrations and activities of CYPs and other enzymes
in both mucosae could be comparable or even higher than
that of liver (2,11). The human olfactory epithelium,
restricted to a small area in the roof of nasal cavity, only
owns less than 10% of nasal cavity compared with 50% in
rat (12) and 77% in dog (13). Thus, the animal nasal
models might overestimate the metabolism of nasal drug
by olfactory epithelium. Due to species differences in nasal
enzyme expression and metabolic capacities between
human and laboratory animals (10), nasal metabolic data
obtained from animal models should be interpreted with
caution.

The importance of nasal metabolism in clinical practi-
ces 1s exemplified by ciclesonide, a novel corticosteroid for
the treatment of allergic rhinitis and asthma. After nasal
administration of ciclesonide, it is activated by intracellu-
lar esterases (mainly carboxylesterases and cholinesterases)
in human nasal and other airway cells to pharmacologi-
cally active metabolite desisobutyryl-ciclesonide (des-CIC).
The highly lipophilic fatty acid conjugates (logD~13) of
des-CIC are retained inside the nasal cells and serve as a
reversible pool of des-CIC, which remains at a stable
amount throughout a 24-hour post-treatment period,
allowing once-daily dosing for allergic rhinitis and asthma
(14,15).

Compared to the nasal metabolism of small molecules,
the impact of enzymatic degradation for nasal delivery of
peptides is even more pronounced. In vitro human nasal
metabolisms of peptides are summarized in Table IL. In
human nasal epithelium, peptide degradation by both
exopeptidase (aminopeptidases, carboxypeptidases) and
endopeptidases has been demonstrated. In vitro studies
suggested that rate of enkephalin hydrolysis by nasal
mucosa did not differ substantially from the ileal mucosa
(16). Moreover, metabolism of opioid tetrapeptide was
higher after intranasal delivery than intra-tracheal, pulmo-
nary and intravenous applications (17), which suggested
that enzymatic degradation could be one of the main
barriers for nasal-delivered peptides and proteins. Leucine-
enkephalin and methionine-enkephalin, the two model
peptides for nasal metabolic studies, were mainly degraded
via cleavage of tyrosine at the N-terminus by amino-
peptidases (18).

As demonstrated in Table II, discrepancies in results
from metabolic studies have been observed, e.g. in leucine-
enkephalin (19), which could be attributed to four possible
factors. First, species differences of nasal enzymes such as
aminopeptidase and esterase (20) had been identified. As an
example, the degradation product of desamino', D-argi-
nine®-vasopressin rapidly formed in rabbit nasal mucosa
(21) and rat intestinal mucosa (22) i vitro was not identified
in human plasma after nasal administration of the drug
(21). Since the predictability of animal metabolic studies
remains controversial, we have only summarized data from
human trials (Table I) and i vitro human nasal metabolism
(Table II). Second, different experimental models have
been applied in nasal metabolic studies. Among the four
human nasal primary culture systems, peptidase activity
was in the order of sequential monolayer-suspension > air-
liquid interface > immersion > floating collagen (19). While
nasal lavage contains mainly the extracellular enzymes,
homogenization of the nasal tissue might liberate and/or
degrade certain nasal enzymes (23). Thus, the rate and/or
extent of peptide metabolism could vary between different
in vitro metabolic incubation systems. Third, saturation of
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nasal peptidases may lead to a certain portion of the nasal
drug escaping from nasal metabolisms when the peptide
dose chosen exceeds the metabolic capacity of the model
(24,25). Fourth, the nasal cavity might not be the only
region for drug absorption and metabolism i vivo, and part
of the peptides could deposit in the oropharynx and be
swallowed into GI tract, which will be discussed in the
coming section.

Contribution of Gl Absorption and Metabolism
After Intranasal Administration

GI absorption and metabolism after nasal administration is
unavoidable due to the following two situations. First, the
mucus layer is propelled by the cilia towards the nasophar-
ynx and then to the GI tract with a mucociliary transit time
about 12 to 15 mins in humans (26). Therefore, a portion of
the drug might be cleared into the GI tract before it is
completely absorbed in the nasal cavity. Second, when the
volume of solutions applied to the nasal cavity exceeds
100 pl in human and 20 pl in rat (12), significant amount of
the drug might be swallowed and subjected to metabolisms
in GI tract and liver.

In human trial by Fattinger et al. (27), after intranasal
administration of cocaine solution, the fraction absorbed
through the nasal mucosa was estimated to be 19%, which
contributed 31% of total systemic cocaine exposure. By
giving oral-activated charcoal, which can block drug
absorption in GI, the direct absorption of zolmitriptan
through nasal mucosa after administration via nasal spray
was found to contribute only 29% of total zolmitriptan
exposure. After intranasal administration of zolmitriptan, it
was found that there was 30% of the total dose converted to
183C91, its active metabolite, via GI metabolism, whereas
no zolmitriptan or 183C91 was detected in patients with
charcoal treatment after ingestion of zolmitriptan tablet
(28). Through similar strategy, the actual nasal absorption
of beclomethasone dipropionate was suggested to be less
than 1% after intranasal dosing. With oral charcoal
treatment, concentration of the active metabolite, beclome-
thasone 17-monopropionate dropped significantly to a very
low level in plasma (29) (Table I).

Further mechanistic studies suggested that highly per-
meable drugs, such as methotrexate and sulfanilic acid,
were primarily absorbed through the nasal mucosa before it
1s cleared to the GI tract, and poorly permeable drug, such
as inulin, was absorbed neither from the nasal nor the GI
tract (30). It 1s suggested that the primary absorption site of
drug after nasal application is determined by rate of
mucociliary clearance and the extent of absorption through
the nasal mucosa.

In summary, the significance of GI absorption and
metabolism cannot be overlooked. Several strategies to
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minimize the GI disposition after nasal administration have
been investiagated, including utilization of bioadhesive
materials and microspheres to increase nasal residence time
so as to enhance the absorption in nasal cavity and
bioavailability (26,31). Clinical trials on desmopressin
suggested that using spray device and applying the drug
in divided doses to each nostril (2X50 pl rather than 1X
100 pl) would enhance nasal absorption, bioavailability and
clinical efficacy (32,33).

Example: Intranasal Opioids

The human plasma dispositions of parent drugs and
metabolites after nasal administrations are summarized in
Table I. Based on the well documented activities of both
parent drug and resultant metabolites (34), opioids are used
as examples to demonstrate the role of metabolism in
intranasal delivery. For review, refer to ref. (35,36).

Pharmacokinetic study of heroin (diacetylmorphine or
diamorphine) indicated that heroin is rapidly hydrolyzed in
plasma by esterases to 6-monoacetylmorphine and then to
morphine, which is further glucuronidated to morphine-3-
glucuronide (M3G, with no analgesic activity) or morphine-
6-glucuronide (M6G, active metabolite) primarily by
UGT2B7 (37). After intranasal administration of heroin, a
second peak in plasma concentrations of both morphine
and M3G was observed in several subjects. The investi-
gators suggested that it could be due to transient storage of
parent drug or metabolite in nasal cavity, or swallowing of
the intranasal dose with resultant delay in absorption and
metabolism (38—40). After intranasal administration of
morphine prepared with chitosan, the levels of its metab-
olites were comparable to that after intravenous, which
were much lower than after oral route (41). Such results
could be served as the evidence for direct uptake of
morphine from nasal cavity to systemic circulation, escap-
ing from first-pass metabolism in GI tract and liver,
although chitosan, an absorption enhancer, could be a
contributing factor.

In summary, Table I provides some insights on the
metabolite formation after nasal drug application. Most of
the drugs listed in Table I are subjected to significant first
pass metabolisms in GI tract and liver after oral intake. If
plasma AUCciabotice/ AUCparent drug after intranasal ad-
ministration is higher than that after parenteral route, or
similar to that after ingestion, a considerable portion of the
nasal drug might actually be swallowed and then metabo-
lized, as in the case of zolmitriptan. For most of the drugs
contribution of metabolism in nasal cavity is largely
unknown, except for the intranasal corticosteroids (e.g.
ciclesonide) which are extensively metabolized by both
nasal and GI enzymes, leading to negligible systemic
bioavailabilities of the parent drugs.
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Table Il (continued)

Reference

Comparison between different species

and models

Inhibitors or Results

Enzymes, substrates

Models

absorption enhancers

studied

(bold) and metabolites

(italic) monitored

altered C-terminus and having D- instead of L-configuration in some

of the amino acids

(121

leucine AP, porcine APN, and isolated

enzymes from rabbit or pig nasal

mucosae

= Degradation rate in human nasal wash < 0.02 ug/min, i.e. < 0.5% of = No significant degradation by pure

NA

Human insulin

an intranasally applied insulin dose might be destroyed during the time

of absorption (

30 min)

= LE was quantitatively converted to Des- (122)

= LE and Des-Tyr-LE followed first-order degradation, and all original
Tyr-LE in rat in situ model (1'17)

NA

LE

peptides were hydrolyzed to other fragments

=> Des-Tyr-LE
Des-Tyr-LE

= Amount of Des-Tyr-LE formed from LE was unquantifiable

NA not

AP aminopeptidase, APA aminopeptidase A, APB aminopeptidase B, APN aminopeptidase N, LE leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu), ME methionine-enkephalin (Tyr-Gly-Gly-Phe-Met)

applicable

BRAIN DEPOSITION OF DRUGS AND THEIR
METABOLITES

Nasal Pathways to CNS

Mechanistic studies on nose-to-brain transport proposed
that drug may reach the CNS mainly through three
pathways after nasal instillation: olfactory, trigeminal and
systemic pathways (42,43). The olfactory epithelium is
located at the very top of the nasal cavity, and the drug
may cross the olfactory region by either neuronal or
extraneuronal routes and reaches the brain parenchyma
and CSF. The trigeminal neural pathway provides an
additional route for transporting the drug to brain tissues.
Both the olfactory and trigeminal pathways provide direct
nose-to-brain delivery of the drug, with the extraneuronal
pathway delivering the drug much faster (reaches brain
within minutes) than the transneural pathways (44). The
systemic pathway by which the drug is absorbed into the
systemic circulation followed by brain entry via the blood-
brain barrier (BBB) is an indirect pathway for delivering
nasal-administered drug to brain and confers no selective
advantage on CNS-targeted delivery. The metabolites
formed during circulation might also enter the brain
through BBB. The nasally applied drugs, thus, could reach
the brain/CSF by means of one or multiple transport
mechanisms (45).

Brain Distribution After Nasal Uptake

Quantitative studies about the brain dispositions of metab-
olites after nasal applications of parent compounds are
rather limited and are presented in Table III.

The nasal absorption and the subsequent brain/CSF
uptake are related to the lipophilicity and molecular size
of the drug (46). The distribution of drug in brain after
nasal uptake also partly depends on these physiochemical
properties. Graff and colleagues (47) demonstrated in P-
glycoprotein (P-gp)-deficient mice that [*H]-sucrose
showed very limited brain uptake and did not distribute
beyond the olfactory region. In addition, no [*H]-sucrose
was detected in the brain after intravenous administration,
as this bulky, hydrophilic compound was unable to cross
the BBB. ['*C]-diazepam, the most lipophilic compound
tested, exhibited the highest total brain exposure, which
was probably due to efficient diffusion through the
olfactory epithelium into the brain. The amount delivered
to brain correlated significantly with the log P values of the
four model compounds tested. Nasal delivery resulted in
preferential brain exposure in rostral portion, and the
exposure decreased consistently from rostral to caudal
portions. These results indicate that, in the absence of
transporter-mediated flux such as P-gp, physicochemical
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properties of the compound (i.e., lipophilicity) serve as the
primary determinant of brain uptake and distribution after
nasal application.

As the metabolites, particularly the phase-II conjugates,
are more hydrophilic and bulky, it is expected that they
might have a more limited distribution within the brain
than their parent compounds if active transporters are not
involved. Intranasal administrations of both cocaine (48)
and benzoylecgonine (its O-demethylated active metabolite)
(49) have been conducted and compared with that from
intravenous administrations. It was found that the expected
enhancement in brain-to-plasma ratio via nasal adminis-
trations 1s more significant for hydrophilic benzoylecgonine
(logP 0.15) than hydrophobic cocaine (logP 7.6), which
could be due to their lipophilicity differences and relative
blood-brain barrier permeabilities.

Considering the CNS-targeting potentials of intranasal
route after nasal application of the parent drugs, the active
metabolites of these CNS drugs could contribute to the
therapeutic effects in CNS even though they might have
lower abilities to cross the BBB than the parent compounds.
M6G is a good example to demonstrate this concept.
Although M6G has direct analgesic effects, and the potency
of M6G ranged from 0.3 to 808 times of that of morphine
in rat or mice pain models (50), morphine was found to be
present in human CSF at several folds higher concentration
than its glucuronide metabolites after different routes of
administrations (51). Klipatrick and Smith suggest that,
although M6G has a lower efficiency in crossing the BBB
than morphine, probably as a result of lower lipophilicity,
other features of M6G, including metabolic stability, high
unbound levels in fluid compartments on both sides of the
BBB, low distribution from brain extracellular to intracel-
lular fluid, and differences in affinities for transporter
proteins may compensate and contribute to the observed
in vivo efficacy of M6G (50).

Graff and colleagues also demonstrated that P-gp, which
is present in both nasal cavity, olfactory epithelium and
olfactory bulb, attenuated brain uptake and facilitated
brain removal of intranasally administered P-gp substrates
(52), which might be reversed by intranasal P-gp inhibitor
(52,53). The magnitude of the influence of P-gp on
substrate residence in brain depended on the region of
brain (47). Therefore, both lipid solubility and efflux
transporters are important factors in determining nasal
absorption and subsequent distribution in brain.

In addition to Pgp, lipophilicity and molecular size of the
parent compounds as well as their metabolites, metabolic
characteristics of different animal models could also affect
the brain dispositions of parent drugs and their metabolites
after nasal delivery. Studies in both mice and rats
demonstrated that diazepam is metabolized by CYPs to
N-desmethyldiazepam, which is further hydroxylated to

@ Springer

oxazepam. Compared to diazepam, its metabolites enter
the brain more slowly after systemic administration but
exert comparable anticonvulsant activity. These studies also
showed that the level of diazepam is similar in both species,
while there is an accumulation of N-desmethyl metabolites
in brain of mice rather than rats, providing longer lasting
anticonvulsant effect (54-56). After intravenous injection of
diazepam to mice, diazepam is no longer detectable 60 min
post-injection. Although MN-desmethyl metabolites are still
detectable in brain and plasma 24 hours after injection of
diazepam to mice (57,58), they are only transiently present
in trace amount in rat brain after diazepam injection (54).
Therefore, a significant portion of the radioactivity in mice
brain at 6 hours post-dose (when peak radioactivity
occurred) in Graff’s study on nasally delivered ['*C]-
diazepam (47) could be constituted by these metabolites.
On the contrary, Kaur and Kim concluded that there was
no significant direct nose-to-brain transport of diazepam
via olfactory epithelium since they observed homogenous
distribution patterns of the unchanged diazepam in various
brain regions within 60 min after intranasal and intrave-
nous administrations in both S/D rats and rabbits (59).
Therefore, species difference should be considered in nasal
delivery studies. Even within the same species, inter-strain
differences in diazepam metabolism by liver (60) and kidney
(61) had been identified in rats.

IMPLICATIONS OF METABOLISM FOR NASAL
DRUG DEVELOPMENT

Pharmacokinetic and Pharmacodynamic Monitoring
of Nasal-Delivered Drugs

Active metabolites are common for various CNS drugs, and
their roles in opioids (34), antidepressants (62) and
antipsychotic drugs (63) have been well documented. From
a drug-development perspective, active metabolites appear
to be a mixed blessing. Although they can be developed as
“new” drugs in their own right (64), for the safety
evaluation of new drug products, certain metabolites have
to be monitored in systemic circulation such as plasma and
excreta such as urine and feces (65,66). Which metabolites
and how they should be assessed remain a matter of study
and debate.

The pharmacokinetics of metabolites is more complex
than that of parent drug. More effort should be put into
monitoring the active metabolite profiles and investigating
the correlation of active metabolites levels with pharmaco-
dynamic effects after nasal application, which could provide
further clinical utilities. For instance, as morphine has lower
clearance rate than heroin and 6-acetylmorphine, mor-
phine is present in the body for a longer period of time. So
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(80)

0.7 min) but is stable in CSF and nasal perfusate (t;, 33 and

[44 min, resp.)

= Prodrug is rapidly hydrolyzed in rat brain and plasma (t;,

= Prodrug has 400 higher solubility than L-DA

= Conc. of L-DA and DA in CSF and OB were several times higher

after IN
= L-DA is further decarboxylated to DA in brain and peripheral

circulation

nostril, compared with

IN solution (100 ul) to one
equivalent IV dose

L-dopa Butyl Ester

(prodrug)
= [-dopa (L-DA)

=>Dopamine (DA)

@ Springer

= Ester hydrolysis in rat brain is rate limiting for nipecotic acid brain (83)

Total brain exposure to nipecotic acid was not significantly different
after IN and IV

IN solution (25 ul) to each

Nipecotic Acid n-

Butyl Ester

delivery

nostril, compared with

equivalent IV dose

(prodrug)
=> Nipecotic Acid

= Tissue trapping of the nipecotic acid formed in brain

“Study using mouse. CSF cerebrospinal fluid, Hem hemisphere, IN intranasal, IV intravenous, NA not available, OB olfactory bulb

after intranasal heroin administration in human, mor-
phine’s time course coincided most closely with that
observed for drug-induced effects (38). After intranasal
administration, zolmitriptan appeared in human plasma
more rapidly (2 min) compared with that after oral tablet
(10 min), reflecting rapid absorption across nasal mucosa
and that first-pass metabolism may be initially bypassed.
However, the appearance of its active metabolite 183C91
was delayed after intranasal administration (67,68). In such
case, nasal application of zolmitriptan might have a dual
advantage of faster onset of action against the acute migraine
attack through the parent compound, with sustained relief
and protection against recurrence of migraine attack
symptoms via its active metabolite 183C91 (67).

In addition to therapeutic benefits, potential interactions
among parent drugs and the active metabolites could exist.
M3G does not bind to opioid receptors and is devoid of
analgesic activity. However, M3G might antagonize M6G-
analgesia and morphine-analgesia in rat (69,70). Intranasal
midazolam has been extensively investigated for its thera-
peutic effects in both children and adults. The pharmaco-
dynamic competitive interaction between midazolam and
its active metabolite 1-hydroxy-midazolam has also been
characterized n viwo (71).

Considering the above-mentioned complexities resulted
from intranasal administration, it is believed that the
clinical effects cannot be predicted merely from plasma
level of the parent drug, and the use of biomarkers should
be considered. Biomarkers are objective physical signs or
laboratory measurements occurring in association with a
pathological process and have putative diagnostic and/or
prognostic utility (72). For instance, intranasal cortico-
steroids are intended for the local treatment of allergic
rhinitis. However, the systemic availabilities of different
intranasal corticosteroids could range from less than 0.1%
to 100%; thus, systemic toxicity is a concern (73,74).
Different biomarkers have been used as surrogate measure-
ments for the systemic effects, including hypothalamic-
pituitary-adrenal axis activity, bone metabolism and growth
after intranasal corticosteroids treatment (75,76). There-
fore, the relationships between plasma levels and brain
levels of drug, metabolites, biomarkers and clinical out-
comes should be further assessed for nasal-delivered drugs.

Nasal Drug Design
Prodrug and Structural Modification Approaches

As metabolizing enzymes are present in the nasal mucosa,
use of prodrug has been adopted as a strategy to enhance
nasal drug delivery of small molecules and peptides (77).
Esterification is one of the most common approaches, as
esterases are present and exhibit high activity in the nasal



Metabolism and Brain Disposition of Nasally Delivered Drug

1219

mucosa (20,78). Among the intranasal corticosteroids,
ciclesonide and beclomethasone dipropionate (Table I) are
nactive ester prodrugs, which would be activated by
esterases in nasal cells for local anti-inflammatory actions.

Prodrugs confer particular advantage to CNS-target
delivery, and nose-to-brain delivery of several prodrugs
have been reported (79) and summarized in Table III.
Hydrophilicities and enzymatic stabilities of the prodrugs
could be manipulated by modifying the chemical structure.
The ester prodrugs of L-dopa (80) and 17B-estradiol (81)
have 100 to 400 times higher aqueous solubilities than the
original drugs, and all these ester prodrugs are rapidly
hydrolyzed in brain and plasma. Compared with intrave-
nous dosing, nasal deliveries of all these prodrugs achieved
higher brain exposure of original drugs. On the contrary,
direct nasal administration of L-dopa did not enhance brain
disposition (AUCp4in/ AUCjasma) compared with intrave-
nous and oral routes (82). Nipecotic acid, a CNS active
zwitterions, had only 14% systemic availability after nasal
dosing, which is possibly due to its highly polar nature (logP
0.006). However, with a better hydrophilic-hydrophobic
balance, the n-butyl ester of nipecotic acid (logP 0.93) could
achieve a systemic availability of 92% after nasal delivery
(83). Deliveries of 2',3'-didehydro-3'-deoxythymidine (D4T)
and its acetate and hemi-succinate prodrugs to CSF via
nasal route indicated that a large part of the acetate
prodrug might be hydrolyzed in the nasal cavity to D4T
prior or during transport to CSF, whereas the more
hydrophilic hemi-succinate prodrug reached CSF slowly
and mainly as intact form due to its higher enzymatic
stability in nasal tissue (84).

Considering protease inhibitors’ ciliotoxicity (85) and
their interferences on the physiological functioning of
endogenous proteases, structural modification of peptides
could be an alternative approach to enhance enzymatic
stability and nasal absorption of peptides. For instance, L-
tyrosine was absorbed from the nasal cavity in its
zwitterionic form with limited absorption. Although the
esters of L-tyrosine studied had higher partition coeflicients
than tyrosine, only the carboxylic acid esters, but not the O-
actyl esters, exhibited higher absorption rates with only a
small portion being hydrolyzed to tyrosine. The enhance-
ment of nasal absorption by esterification is therefore
attributed to the masking of negative charge on carboxylate
moiety of the amino acid rather than the increase in
lipophilicity (86). The more lipophilic methyl ester of L-
tyrosyl-L-tyrosine was also found to be stable in nasal cavity
with similar absorption rate to that of the original peptide
(87). Study on a series of hexapeptides also illustrated that
nasal absorption of peptides might not correlate closely with
their lipophilicities (88).

Besides esterification, the effects of other structural
modification on nasal metabolism and absorption of

peptides had also been reported. Changing the N-
terminal amino acid of leucine-enkephalin from tyrosine
to aspartic acid provided excellent stability against amino-
peptidases while maintaining similar nasal absorption rate
(89). Substitution of natural L-amino acid with unnatural
D-amino acid could also enhance the stability of the
peptide against nasal peptidase (16,88). Polyethyleneglycol
conjugation on salmon calcitonin could not only protect the
peptide against nasal peptidases (90), but also lead to
delayed time to maximal concentration and prolonged
elimination half life after nasal administration (91), proba-
bly because the pegylated peptide is retained in the nasal
cavity and serves as a reservoir of sustained release (92).

Direct Application of the Active Metabolites

When given to humans or animals, a synthetic, preformed
metabolite’s kinetic behavior could differ from that of the
corresponding metabolite generated endogenously from its
parent compound (93,94). Nasal application of preformed
metabolites, which are usually more hydrophilic and more
bulky (if such metabolites are phase-II conjugation prod-
ucts) than the parent compounds, might result in lower
contribution of nasal cavity absorption (relative to GI
absorption) to total exposure (30). Therefore, the pharma-
cokinetic profile should be carefully studied if the pre-
formed metabolite is used for nasal delivery.

Direct applications of preformed active metabolites have
been reported. The pharmacokinetic and pharmacodynam-
ic effects of intranasal cocaethylene, an active metabolite of
cocaine, had been studied in human. Using the same dose
of intranasal cocaine to compare, intranasal cocaethylene
resulted in similar euphoria with shorter absorption half life
but longer elimination half life (95). Nasal application of
M6G in sheep resulted in a bioavailability of 31% with no
morphine or M3G detected in plasma (96). Nose-to-brain
delivery of benzoylecgonine, the active metabolite of
cocaine, had also been studied in rat (49) as discussed in
the previous section.

SUMMARY

There is a need for further investigation in metabolite
formation and disposition after nasal application. It is
difficult to predict the overall efficacy of the nasal drug as
both the formations and/or ratios of parent drugs and
active metabolites in plasma and brain could be modified
by the nasal route. The clinical effects cannot be estimated
merely from the pharmacokinetic parameters from human
or animal models. Therefore, concurrent pharmacodynam-
ic investigations are necessary to establish the potential
utilities of the nasal drug. Biomarkers from plasma, CGSF or
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other tissues could be used and should be investigated

simultaneously if possible. The relationships between levels

of parent drug, metabolites, biomarkers and clinical

responses should be verified. More effort should be put on
the pharmacokinetic-pharmacodynamic correlations of ac-
tive metabolites, which would facilitate the development of
nasal medicines in forms of parent drugs, prodrugs or
preformed metabolites.
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